Geometry-Aware Neighborhood Search for Learning Local Models for Image Superresolution

Julio Cesar Ferreira 1 Elif Vural 1 Christine Guillemot 1
1 Sirocco - Analysis representation, compression and communication of visual data
IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE, Inria Rennes – Bretagne Atlantique
Abstract : Local learning of sparse image models has proven to be very effective to solve inverse problems in many computer vision applications. To learn such models, the data samples are often clustered using the K-means algorithm with the Euclidean distance as a dissimilarity metric. However, the Euclidean distance may not always be a good dissimilarity measure for comparing data samples lying on a manifold. In this paper, we propose two algorithms for determining a local subset of training samples from which a good local model can be computed for reconstructing a given input test sample, where we take into account the underlying geometry of the data. The first algorithm, called Adaptive Geometry-driven Nearest Neighbor search (AGNN), is an adaptive scheme which can be seen as an out-of-sample extension of the replicator graph clustering method for local model learning. The second method, called Geometrydriven Overlapping Clusters (GOC), is a less complex nonadaptive alternative for training subset selection. The proposed AGNN and GOC methods are shown to outperform spectral clustering, soft clustering, and geodesic distance based subset selection in an image super-resolution application.
Type de document :
Article dans une revue
IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2016, 25 (3), pp.14
Liste complète des métadonnées

Littérature citée [42 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01388955
Contributeur : Christine Guillemot <>
Soumis le : mardi 15 novembre 2016 - 10:55:22
Dernière modification le : jeudi 15 novembre 2018 - 11:57:53
Document(s) archivé(s) le : jeudi 16 mars 2017 - 17:45:29

Fichier

ferreira_agnn_goc_004.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01388955, version 1

Citation

Julio Cesar Ferreira, Elif Vural, Christine Guillemot. Geometry-Aware Neighborhood Search for Learning Local Models for Image Superresolution. IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2016, 25 (3), pp.14. 〈hal-01388955〉

Partager

Métriques

Consultations de la notice

225

Téléchargements de fichiers

65