Out-of-sample generalizations for supervised manifold learning for classification

Elif Vural 1 Christine Guillemot 1
1 Sirocco - Analysis representation, compression and communication of visual data
IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE, Inria Rennes – Bretagne Atlantique
Abstract : Supervised manifold learning methods for data classification map data samples residing in a high-dimensional ambient space to a lower-dimensional domain in a structure- preserving way, while enhancing the separation between different classes in the learned embedding. Most nonlinear supervised manifold learning methods compute the embedding of the man- ifolds only at the initially available training points, while the generalization of the embedding to novel points, known as the out-of-sample extension problem in manifold learning, becomes especially important in classification applications. In this work, we propose a semi-supervised method for building an interpola- tion function that provides an out-of-sample extension for general supervised manifold learning algorithms studied in the context of classification. The proposed algorithm computes a radial basis function (RBF) interpolator that minimizes an objective function consisting of the total embedding error of unlabeled test samples, defined as their distance to the embeddings of the manifolds of their own class, as well as a regularization term that controls the smoothness of the interpolation function in a direction-dependent way. The class labels of test data and the interpolation function parameters are estimated jointly with a progressive procedure. Experimental results on face and object images demonstrate the potential of the proposed out-of-sample extension algorithm for the classification of manifold-modeled data sets
Type de document :
Article dans une revue
IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2016, 25 (3), pp.15
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01388959
Contributeur : Christine Guillemot <>
Soumis le : mardi 15 novembre 2016 - 10:48:09
Dernière modification le : mercredi 16 mai 2018 - 11:23:38
Document(s) archivé(s) le : jeudi 16 mars 2017 - 11:57:32

Fichier

oos_ml.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01388959, version 1

Citation

Elif Vural, Christine Guillemot. Out-of-sample generalizations for supervised manifold learning for classification. IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2016, 25 (3), pp.15. 〈hal-01388959〉

Partager

Métriques

Consultations de la notice

239

Téléchargements de fichiers

141