Preserving differential privacy under finite-precision semantics

Ivan Gazeau 1, 2 Dale Miller 2, 3 Catuscia Palamidessi 1, 3, 4
1 COMETE - Concurrency, Mobility and Transactions
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France
2 PARSIFAL - Proof search and reasoning with logic specifications
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France
Abstract : The approximation introduced by finite-precision representation of continuous data can induce arbitrarily large information leaks even when the computation using exact semantics is secure. Such leakage can thus undermine design efforts aimed at protecting sensitive information. We focus here on differential privacy, an approach to privacy that emerged from the area of statistical databases and is now widely applied also in other domains. In this approach, privacy is protected by adding noise to the values correlated to the private data. The typical mechanisms used to achieve differential privacy have been proved correct in the ideal case in which computations are made using infinite-precision semantics. In this paper, we analyze the situation at the implementation level, where the semantics is necessarily limited by finite precision, i.e., the representation of real numbers and the operations on them are rounded according to some level of precision. We show that in general there are violations of the differential privacy property, and we study the conditions under which we can still guarantee a limited (but, arguably, acceptable) variant of the property, under only a minor degradation of the privacy level. Finally, we illustrate our results on two examples: the standard Laplacian mechanism commonly used in differential privacy, and a bivariate version of it recently introduced in the setting of privacy-aware geolocation.
Type de document :
Article dans une revue
Theoretical Computer Science, Elsevier, 2016
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger
Contributeur : Dale Miller <>
Soumis le : mercredi 2 novembre 2016 - 15:55:27
Dernière modification le : mercredi 23 janvier 2019 - 10:29:24
Document(s) archivé(s) le : vendredi 3 février 2017 - 14:21:52


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01390927, version 1


Ivan Gazeau, Dale Miller, Catuscia Palamidessi. Preserving differential privacy under finite-precision semantics. Theoretical Computer Science, Elsevier, 2016. 〈hal-01390927〉



Consultations de la notice


Téléchargements de fichiers