Automating Transition Functions: A Way To Improve Trading Profits with Recurrent Reinforcement Learning

Abstract : This paper presents an application of the logistic smooth transition function and recurrent reinforcement learning for designing financial trading systems. We propose a trading system which is an upgraded version of the regime-switching recurrent reinforcement learning (RS-RRL) trading system referred to in the literature. In our proposed system (RS-RRL 2.0), we use an automated transition function to model the regime switches in equity returns. Unlike the original RS-RRL trading system, the dynamic of the transition function in our trading system is driven by utility maximization, which is in line with the trading purpose. Volume, relative strength index, price-to-earnings ratio, moving average prices from technical analysis, and the conditional volatility from a GARCH model are considered as possible options for the transition variable in RS-RRL type trading systems. The significance of Sharpe ratios, the choice of transition variables, and the stability of the trading system are examined by using the daily data of 20 Swiss SPI stocks for the period April 2009 to September 2013. The results from our experiment show that our proposed trading system outperforms the original RS-RRL and RRL trading systems suggested in the literature in terms of better Sharpe ratios recorded in three consecutive out-of-sample periods.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.39-49, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_4〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01391291
Contributeur : Hal Ifip <>
Soumis le : jeudi 3 novembre 2016 - 10:50:44
Dernière modification le : mercredi 10 janvier 2018 - 14:18:18
Document(s) archivé(s) le : samedi 4 février 2017 - 13:07:58

Fichier

978-3-662-44654-6_4_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Jin Zhang. Automating Transition Functions: A Way To Improve Trading Profits with Recurrent Reinforcement Learning. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.39-49, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_4〉. 〈hal-01391291〉

Partager

Métriques

Consultations de la notice

149

Téléchargements de fichiers

218