Predicting Water Permeability of the Soil Based on Open Data

Abstract : Water permeability is a key concept when estimating load bearing capacity, mobility and infrastructure potential of a terrain. Northern sub-arctic areas have rather similar dominant soil types and thus prediction methods successful at Northern Finland may generalize to other arctic areas. In this paper we have predicted water permeability using publicly available natural resource data with regression analysis. The data categories used for regression were: airborne electro-magnetic and radiation, topographic height, national forest inventory data, and peat bog thickness. Various additional features were derived from original data to enable better predictions. The regression performances indicate that the prediction capability exists up to 120 meters from the closest direct measurement points. The results were measured using leave-one-out cross-validation with a dead zone between the training and testing data sets.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.436-446, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_43〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01391345
Contributeur : Hal Ifip <>
Soumis le : jeudi 3 novembre 2016 - 11:03:44
Dernière modification le : vendredi 1 décembre 2017 - 01:16:36
Document(s) archivé(s) le : samedi 4 février 2017 - 13:34:46

Fichier

978-3-662-44654-6_43_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Jonne Pohjankukka, Paavo Nevalainen, Tapio Pahikkala, Eija Hyvönen, Pekka Hänninen, et al.. Predicting Water Permeability of the Soil Based on Open Data. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.436-446, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_43〉. 〈hal-01391345〉

Partager

Métriques

Consultations de la notice

51

Téléchargements de fichiers

20