Similarity Based Cross-Section Segmentation in Rough Log End Images

Abstract : This work treats cross-section (CS) segmentation in digital images of rough wood log ends. Existing CS segmentation approaches are focused on computed tomography CS images of logs and no approach and experimental evaluation for digital images has been presented so far. Segmentation of cross-sections in rough log end images is a prerequisite for the development of novel log end analysis applications (e.g. biometric log recognition or automated log grading). We propose a simple and fast computable similarity-based region growing algorithm for CS segmentation. In our experiments we evaluate different texture features (Local binary patterns & Intensity histograms) and histogram distances. Results show that the algorithm achieves the most accurate results in combination with intensity histograms and the earth movers distance. Generally, we conclude that for certain applications simple texture features and a matured distance metric can outperform higher-order texture features and basic distance metrics.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.614-623, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_61〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01391368
Contributeur : Hal Ifip <>
Soumis le : jeudi 3 novembre 2016 - 11:11:04
Dernière modification le : vendredi 1 décembre 2017 - 01:16:35
Document(s) archivé(s) le : samedi 4 février 2017 - 13:06:08

Fichier

978-3-662-44654-6_61_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Rudolf Schraml, Andreas Uhl. Similarity Based Cross-Section Segmentation in Rough Log End Images. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.614-623, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_61〉. 〈hal-01391368〉

Partager

Métriques

Consultations de la notice

93

Téléchargements de fichiers

48