Semantic Segmentation using Adversarial Networks

Abstract : Adversarial training has been shown to produce state of the art results for generative image modeling. In this paper we propose an adversarial training approach to train semantic segmentation models. We train a convolutional semantic segmentation network along with an adversarial network that discriminates segmentation maps coming either from the ground truth or from the segmentation network. The motivation for our approach is that it can detect and correct higher-order inconsistencies between ground truth segmentation maps and the ones produced by the segmentation net. Our experiments show that our adversarial training approach leads to improved accuracy on the Stanford Background and PASCAL VOC 2012 datasets.
Type de document :
Communication dans un congrès
NIPS Workshop on Adversarial Training, Dec 2016, Barcelona, Spain
Liste complète des métadonnées


https://hal.inria.fr/hal-01398049
Contributeur : Thoth Team <>
Soumis le : mercredi 23 novembre 2016 - 14:18:46
Dernière modification le : vendredi 6 janvier 2017 - 11:35:54
Document(s) archivé(s) le : lundi 20 mars 2017 - 22:38:38

Fichier

luc16wat.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01398049, version 1

Collections

Citation

Pauline Luc, Camille Couprie, Soumith Chintala, Jakob Verbeek. Semantic Segmentation using Adversarial Networks. NIPS Workshop on Adversarial Training, Dec 2016, Barcelona, Spain. <hal-01398049>

Partager

Métriques

Consultations de
la notice

785

Téléchargements du document

503