Modeling Spatial Layout of Features for Real World Scenario RGB-D Action Recognition

Michal Koperski 1 Francois Bremond 1
1 STARS - Spatio-Temporal Activity Recognition Systems
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Depth information improves skeleton detection, thus skeleton based methods are the most popular methods in RGB-D action recognition. But skeleton detection working range is limited in terms of distance and viewpoint. Most of the skeleton based action recognition methods ignore fact that skeleton may be missing. Local points-of-interest (POIs) do not require skeleton detection. But they fail if they cannot detect enough POIs e.g. amount of motion in action is low. Most of them ignore spatial-location of features. We cope with the above problems by employing people detector instead of skeleton detector. We propose method to encode spatial-layout of features inside bounding box. We also introduce descriptor which encodes static information for actions with low amount of motion. We validate our approach on: 3 public data-sets. The results show that our method is competitive to skeleton based methods, while requiring much simpler people detection instead of skeleton detection.
Type de document :
Communication dans un congrès
AVSS 2016, Aug 2016, Colorado Springs, United States. pp.44 - 50, 2016, 〈http://avss2016.org/〉. 〈10.1109/AVSS.2016.7738023〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01399037
Contributeur : Michal Koperski <>
Soumis le : vendredi 18 novembre 2016 - 11:31:37
Dernière modification le : mardi 24 juillet 2018 - 15:48:17
Document(s) archivé(s) le : mardi 21 mars 2017 - 09:38:35

Fichier

koperski_avss16_hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Michal Koperski, Francois Bremond. Modeling Spatial Layout of Features for Real World Scenario RGB-D Action Recognition. AVSS 2016, Aug 2016, Colorado Springs, United States. pp.44 - 50, 2016, 〈http://avss2016.org/〉. 〈10.1109/AVSS.2016.7738023〉. 〈hal-01399037〉

Partager

Métriques

Consultations de la notice

204

Téléchargements de fichiers

146