Subsampling for Chain-Referral Methods

Abstract : We study chain-referral methods for sampling in social networks. These methods rely on subjects of the study recruiting other participants among their set of connections. This approach gives us the possibility to perform sampling when the other methods, that imply the knowledge of the whole network or its global characteristics, fail. Chain-referral methods can be implemented with random walks or crawling in the case of online social networks. However, the estimations made on the collected samples can have high variance, especially with small sample size. The other drawback is the potential bias due to the way the samples are collected. We suggest and analyze a sub-sampling technique, where some users are requested only to recruit other users but do not participate to the study. Assuming that the referral has lower cost than actual participation, this technique takes advantage of exploring a larger variety of population, thus decreasing significantly the variance of the estimator. We test the method on real social networks and on synthetic ones. As by-product, we propose a Gibbs like method for generating synthetic networks with desired properties.
Type de document :
Communication dans un congrès
International Conference on Analytical and Stochastic Modeling Techniques and Applications, Aug 2016, Cardiff, United Kingdom. pp.17 - 31, 2016, 〈10.1007/978-3-319-43904-4_2〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01401287
Contributeur : Alina Tuholukova <>
Soumis le : mercredi 23 novembre 2016 - 10:22:16
Dernière modification le : samedi 27 janvier 2018 - 01:31:41
Document(s) archivé(s) le : lundi 20 mars 2017 - 17:02:44

Fichier

ASMTA2016Paper18.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Konstantin Avrachenkov, Giovanni Neglia, Alina Tuholukova. Subsampling for Chain-Referral Methods. International Conference on Analytical and Stochastic Modeling Techniques and Applications, Aug 2016, Cardiff, United Kingdom. pp.17 - 31, 2016, 〈10.1007/978-3-319-43904-4_2〉. 〈hal-01401287〉

Partager

Métriques

Consultations de la notice

259

Téléchargements de fichiers

54