On Scaling of Fuzzy FCA to Pattern Structures

Aleksey Buzmakov 1 Amedeo Napoli 2
2 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : FCA is a mathematical formalism having many applications in data mining and knowledge discovery. Originally it deals with binary data tables. However, there is a number of extensions that enrich standard FCA. In this paper we consider two important extensions: fuzzy FCA and pattern structures, and discuss the relation between them. In particular we introduce a scaling procedure that enables representing a fuzzy context as a pattern structure. Studying the relation between different extensions of FCA is of high importance, since it allows migrating methods from one extension to another. Moreover, it allows for more simple implementation of different extensions within a software.
Type de document :
Communication dans un congrès
The 13th International Conference on Concept Lattices and their Applications (CLA2016), Jul 2016, Moscow, Russia
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01421000
Contributeur : Aleksey Buzmakov <>
Soumis le : mercredi 21 décembre 2016 - 13:22:45
Dernière modification le : jeudi 11 janvier 2018 - 06:25:24
Document(s) archivé(s) le : lundi 20 mars 2017 - 17:34:26

Fichier

cla16-clustering-and-fuzzyness...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01421000, version 1

Collections

Citation

Aleksey Buzmakov, Amedeo Napoli. On Scaling of Fuzzy FCA to Pattern Structures. The 13th International Conference on Concept Lattices and their Applications (CLA2016), Jul 2016, Moscow, Russia. 〈hal-01421000〉

Partager

Métriques

Consultations de la notice

179

Téléchargements de fichiers

37