A tropical isoperimetric inequality

Abstract : We introduce tropical analogues of the notion of volume of polytopes, leading to a tropical version of the (discrete) classical isoperimetric inequality. The planar case is elementary, but a higher-dimensional generalization leads to an interesting class of ordinary convex polytopes, characterizing the equality case in the isoperimetric inequality. This study is motivated by open complexity questions concerning linear optimization and its tropical analogs.
Type de document :
Communication dans un congrès
Proceedings of FPSAC 2017 (29th Conference on Formal Power Series and Algebraic Combinatorics, London), Jul 2017, London, United Kingdom. 78B, pp.Article #27, 2017, Proceedings published in Séminaire Lotharingien de Combinatoire
Liste complète des métadonnées

https://hal.inria.fr/hal-01422522
Contributeur : Stephane Gaubert <>
Soumis le : lundi 26 décembre 2016 - 11:43:20
Dernière modification le : mercredi 14 novembre 2018 - 14:14:16

Lien texte intégral

Identifiants

  • HAL Id : hal-01422522, version 1
  • ARXIV : 1611.04148

Citation

Stéphane Gaubert, Michael Joswig, Depersin Jules. A tropical isoperimetric inequality . Proceedings of FPSAC 2017 (29th Conference on Formal Power Series and Algebraic Combinatorics, London), Jul 2017, London, United Kingdom. 78B, pp.Article #27, 2017, Proceedings published in Séminaire Lotharingien de Combinatoire. 〈hal-01422522〉

Partager

Métriques

Consultations de la notice

612