Cellular Automata on Group Sets and the Uniform Curtis-Hedlund-Lyndon Theorem

Abstract : We introduce cellular automata whose cell spaces are left homogeneous spaces and prove a uniform as well as a topological variant of the Curtis-Hedlund-Lyndon theorem. Examples of left homogeneous spaces are spheres, Euclidean spaces, as well as hyperbolic spaces acted on by isometries; vertex-transitive graphs, in particular, Cayley graphs, acted on by automorphisms; groups acting on themselves by multiplication; and integer lattices acted on by translations.
Type de document :
Communication dans un congrès
Matthew Cook; Turlough Neary. 22th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2016, Zurich, Switzerland. Lecture Notes in Computer Science, LNCS-9664, pp.185-198, 2016, Cellular Automata and Discrete Complex Systems. 〈10.1007/978-3-319-39300-1_15〉
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01435028
Contributeur : Hal Ifip <>
Soumis le : vendredi 13 janvier 2017 - 15:23:54
Dernière modification le : vendredi 13 janvier 2017 - 15:29:41
Document(s) archivé(s) le : vendredi 14 avril 2017 - 20:54:08

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Simon Wacker. Cellular Automata on Group Sets and the Uniform Curtis-Hedlund-Lyndon Theorem. Matthew Cook; Turlough Neary. 22th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2016, Zurich, Switzerland. Lecture Notes in Computer Science, LNCS-9664, pp.185-198, 2016, Cellular Automata and Discrete Complex Systems. 〈10.1007/978-3-319-39300-1_15〉. 〈hal-01435028〉

Partager

Métriques

Consultations de la notice

58