Universal Time-Symmetric Number-Conserving Cellular Automaton

Abstract : We show the existence of Turing-universal and intrinsically universal cellular automata exhibiting both time symmetry and number conservation; this is achieved by providing a way to simulate reversible CA with time-symmetric CA, which preserves the number-conserving property. We also provide some additional results and observations concerning the simulation relations between reversible, time-symmetric and number-conserving CA in the context of partitioned CA.
Type de document :
Communication dans un congrès
Jarkko Kari. 21st Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2015, Turku, Finland. Lecture Notes in Computer Science, LNCS-9099, pp.155-168, 2015, Cellular Automata and Discrete Complex Systems. 〈10.1007/978-3-662-47221-7_12〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01442471
Contributeur : Hal Ifip <>
Soumis le : vendredi 20 janvier 2017 - 16:09:13
Dernière modification le : lundi 23 janvier 2017 - 12:48:41
Document(s) archivé(s) le : vendredi 21 avril 2017 - 16:10:44

Fichier

338243_1_En_12_Chapter.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Diego Maldonado, Andrés Moreira, Anahí Gajardo. Universal Time-Symmetric Number-Conserving Cellular Automaton. Jarkko Kari. 21st Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2015, Turku, Finland. Lecture Notes in Computer Science, LNCS-9099, pp.155-168, 2015, Cellular Automata and Discrete Complex Systems. 〈10.1007/978-3-662-47221-7_12〉. 〈hal-01442471〉

Partager

Métriques

Consultations de la notice

29

Téléchargements de fichiers

7