Discriminants of complete intersection space curves

Laurent Busé 1 Ibrahim Nonkané 2
1 AROMATH - AlgebRe, geOmetrie, Modelisation et AlgoriTHmes
CRISAM - Inria Sophia Antipolis - Méditerranée , UoA - University of Athens
Abstract : In this paper, we develop a new approach to the discriminant of a complete intersection curve in the 3-dimensional projective space. By relying on the resultant theory, we first prove a new formula that allows us to define this discriminant without ambiguity and over any commutative ring, in particular in any characteristic. This formula also provides a new method for evaluating and computing this discriminant efficiently, without the need to introduce new variables as with the well-known Cayley trick. Then, we obtain new properties and computational rules such as the covariance and the invariance formulas. Finally, we show that our definition of the discriminant satisfies to the expected geometric property and hence yields an effective smoothness criterion for complete intersection space curves. Actually, we show that in the generic setting, it is the defining equation of the discriminant scheme if the ground ring is assumed to be a unique factorization domain.
Liste complète des métadonnées

Contributeur : Laurent Busé <>
Soumis le : vendredi 3 février 2017 - 17:02:10
Dernière modification le : jeudi 15 juin 2017 - 09:08:42
Document(s) archivé(s) le : vendredi 5 mai 2017 - 11:29:04


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01455679, version 1
  • ARXIV : 1702.01694



Laurent Busé, Ibrahim Nonkané. Discriminants of complete intersection space curves. 2017. <hal-01455679>



Consultations de
la notice


Téléchargements du document