Task Allocation Strategy Based on Variances in Bids for Large-Scale Multi-Agent Systems

Abstract : We propose a decentralized task allocation strategy by estimating the states of task loads in market-like negotiations based on an announcement-bid-award mechanism, such as contract net protocol (CNP), for an environment of large-scale multi-agent systems (LSMAS). CNP and their extensions are widely used in actual systems, but their characteristics in busy LSMAS are not well understood and thus we cannot use them lightly in larger application systems. We propose an award strategy in this paper that allows multiple bids by contractors but reduces the chances of simultaneous multiple awards to low-performance agents because this significantly degrades performance. We experimentally found that it could considerably improve overall efficiency.
Type de document :
Communication dans un congrès
Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.110-120, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_12〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01459603
Contributeur : Hal Ifip <>
Soumis le : mardi 7 février 2017 - 13:04:39
Dernière modification le : vendredi 1 décembre 2017 - 01:16:35
Document(s) archivé(s) le : lundi 8 mai 2017 - 14:17:30

Fichier

978-3-642-41142-7_12_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Toshiharu Sugawara. Task Allocation Strategy Based on Variances in Bids for Large-Scale Multi-Agent Systems. Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.110-120, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_12〉. 〈hal-01459603〉

Partager

Métriques

Consultations de la notice

27

Téléchargements de fichiers

18