Breast Cancer Detection in Mammogram Medical Images with Data Mining Techniques

Abstract : A domain of interest for data mining applications is the study of biomedical data which, in combination with the field of image processing, provide thorough analysis in order to discover hidden patterns or behavior. Towards this direction, the present paper deals with the detection of breast cancer within digital mammography images. Identification of breast cancer poses several challenges to traditional data mining applications, particularly due to the high dimensionality and class imbalance of training data. In the current approach, genetic algorithms are utilized in an attempt to reduce the feature set to the informative ones and class imbalance issues were also dealt by incorporating a hybrid boosting and genetic sub-sampling approach. As regards to the feature extraction approach, the idea of trainable segmentation is borrowed, using Decision Trees as the base learner. Results show that the best precision and recall rates are achieved by using a combination of Adaboost and k-Nearest Neighbor.
Type de document :
Communication dans un congrès
Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.336-347, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_35〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01459629
Contributeur : Hal Ifip <>
Soumis le : mardi 7 février 2017 - 13:05:35
Dernière modification le : vendredi 1 décembre 2017 - 01:16:34
Document(s) archivé(s) le : lundi 8 mai 2017 - 14:22:19

Fichier

978-3-642-41142-7_35_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Konstantinos Kontos, Manolis Maragoudakis. Breast Cancer Detection in Mammogram Medical Images with Data Mining Techniques. Harris Papadopoulos; Andreas S. Andreou; Lazaros Iliadis; Ilias Maglogiannis. 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 2013, Paphos, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-412, pp.336-347, 2013, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-41142-7_35〉. 〈hal-01459629〉

Partager

Métriques

Consultations de la notice

65

Téléchargements de fichiers

180