Exploiting Social Information in Pairwise Preference Recommender System

Crícia Felício 1 Klérisson Paixão 1 Guilherme Alves 1, 2 Sandra De Amo 3 Philippe Preux 4
4 SEQUEL - Sequential Learning
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : There has been an explosion of social approaches to leverage recommender systems, mainly to deal with cold-start problems. However, most of the approaches are designed to handle explicit user's ratings. We have envisioned Social PrefRec, a social recommender that applies user preference mining and clustering techniques to incorporate social information on the pairwise preference recommenders. Our approach relies on the hypothesis that user's preference is similar to or influenced by their connected friends. This study reports experiments evaluating the recommendation quality of this method to handle the cold-start problem. Moreover, we investigate the effects of several social metrics on pairwise preference recommendations. We also show the effectiveness of our social preference learning approach in contrast to state-of-the-art social recommenders, expanding our understanding of how contextual social information affects pairwise recommenders.
Type de document :
Article dans une revue
Journal of Information and Data Management, Brazilian Computer Society, 2016, 7 (2), pp.16
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01462200
Contributeur : Preux Philippe <>
Soumis le : mercredi 8 février 2017 - 17:14:57
Dernière modification le : vendredi 18 mai 2018 - 14:32:06
Document(s) archivé(s) le : mardi 9 mai 2017 - 13:45:39

Fichier

1596-10577-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01462200, version 1

Collections

Citation

Crícia Felício, Klérisson Paixão, Guilherme Alves, Sandra De Amo, Philippe Preux. Exploiting Social Information in Pairwise Preference Recommender System. Journal of Information and Data Management, Brazilian Computer Society, 2016, 7 (2), pp.16. 〈hal-01462200〉

Partager

Métriques

Consultations de la notice

399

Téléchargements de fichiers

118