Designing Parallel Data Processing for Enabling Large-Scale Sensor Applications

Milan Kabáč 1 Charles Consel 2, 1 Nic Volanschi 1
1 Phoenix - Programming Language Technology For Communication Services
LaBRI - Laboratoire Bordelais de Recherche en Informatique, Inria Bordeaux - Sud-Ouest, EA4136 - Handicap et système nerveux :Action, communication, interaction: rétablissement de la fonction et de la participation [Bordeaux]
Abstract : Masses of sensors are being deployed at the scale of cities to manage parking spaces, transportation infrastructures to monitor traffic, and campuses of buildings to reduce energy consumption. These large-scale infrastructures become a reality for citizens via applications that orchestrate sensors to deliver high-value, innovative services. These applications critically rely on the processing of large amounts of data to analyze situations, inform users, and control devices. This paper proposes a design-driven approach to developing orchestrating applications for masses of sensors that integrates parallel processing of large amounts of data. Specifically, an application design exposes declarations that are used to generate a programming framework based on the MapReduce programming model. We have developed a prototype of our approach, using Apache Hadoop. We applied it to a case study and obtained significant speedups by parallelizing computations over twelve nodes. In doing so, we demonstrate that our design-driven approach allows to abstract over implementation details, while exposing architectural properties used to generate high-performance code for processing large datasets. Furthermore, we show that this high-performance support enables new, personalized services in a smart city. Finally, we discuss the expressiveness of our design language, identify some limitations, and present language extensions.
Type de document :
Article dans une revue
Personal and Ubiquitous Computing, Springer Verlag, 2017, Special Issue on Ubiquitous Intelligence and Computing for Enabling a Smarter World, <10.1007/s00779-017-1009-1>
Liste complète des métadonnées

https://hal.inria.fr/hal-01470281
Contributeur : Eugene Volanschi <>
Soumis le : vendredi 17 février 2017 - 11:30:11
Dernière modification le : samedi 18 février 2017 - 01:07:06
Document(s) archivé(s) le : jeudi 18 mai 2017 - 14:23:57

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Milan Kabáč, Charles Consel, Nic Volanschi. Designing Parallel Data Processing for Enabling Large-Scale Sensor Applications. Personal and Ubiquitous Computing, Springer Verlag, 2017, Special Issue on Ubiquitous Intelligence and Computing for Enabling a Smarter World, <10.1007/s00779-017-1009-1>. <hal-01470281>

Partager

Métriques

Consultations de
la notice

166

Téléchargements du document

63