Getting a morphological tree of shapes for multivariate images: Paths, traps, and pitfalls

Abstract : The tree of shapes is a morphological tree that provides an high-level hierarchical representation of the image suitable for many image processing tasks. This structure has the desirable properties to be self-dual and contrast-invariant and describes the organization of the objects through level lines inclusion. Yet it is defined on gray-level while many images have multivariate data (color images, multispectral images...) where information are split across channels. In this paper, we propose some leads to extend the tree of shapes on colors with classical approaches based on total orders, more recent approaches based on graphs and also a new distance-based method. Eventually, we compare these approaches through denoising to highlight their strengths and weaknesses and show the strong potential of the new methods compared to classical ones.
Type de document :
Communication dans un congrès
21st IEEE International Conference on Image Processing (ICIP), Oct 2017, Paris, France. pp.615 - 619, 2014, 〈10.1109/ICIP.2014.7025123〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01476227
Contributeur : Thierry Géraud <>
Soumis le : vendredi 24 février 2017 - 16:25:52
Dernière modification le : jeudi 5 juillet 2018 - 14:29:09
Document(s) archivé(s) le : jeudi 25 mai 2017 - 13:54:51

Fichier

carlinet.2014.icip.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Edwin Carlinet, Thierry Géraud. Getting a morphological tree of shapes for multivariate images: Paths, traps, and pitfalls. 21st IEEE International Conference on Image Processing (ICIP), Oct 2017, Paris, France. pp.615 - 619, 2014, 〈10.1109/ICIP.2014.7025123〉. 〈hal-01476227〉

Partager

Métriques

Consultations de la notice

215

Téléchargements de fichiers

51