Estimation of Precipitable Water Vapor Using an Adaptive Neuro-fuzzy Inference System Technique

Abstract : Water vapor has an important role in the global climate change development. Because it is essential to human life, many researchers proposed the estimation of atmospheric water vapor values such as for meteorological applications. Lacking of water vapor data in a certain area will a problem in the prediction of current climate change. Here, we reported a novel precipitable water vapor (PWV) estimation using an adaptive neuro-fuzzy inference system (ANFIS) model that has powerful accuracy and higher level. Observation of the surface temperature, barometric pressure and relative humidity from 4 to 10 April 2011 has been used as training and the PWV derived from GPS as a testing of these models. The results showed that the model has demonstrated its ability to learn well in events that are trained to recognize. It has been found a good skill in estimating the PWV value, where strongest correlation was observed for UMSK station (r = 0.95) and the modest correlation was for NTUS station (r = 0.73). In general, the resulting error is very small (less than 5%). Thus, this model approach can be proposed as an alternative method in estimating the value of PWV for the location where the GPS data is inaccessible.
Type de document :
Communication dans un congrès
David Hutchison; Takeo Kanade; Madhu Sudan; Demetri Terzopoulos; Doug Tygar; Moshe Y. Vardi; Gerhard Weikum; Khabib Mustofa; Erich J. Neuhold; A Min Tjoa; Edgar Weippl; Ilsun You; Josef Kittler; Jon M. Kleinberg; Friedemann Mattern; John C. Mitchell; Moni Naor; Oscar Nierstrasz; C. Pandu Rangan; Bernhard Steffen. 1st International Conference on Information and Communication Technology (ICT-EurAsia), Mar 2013, Yogyakarta, Indonesia. Springer, Lecture Notes in Computer Science, LNCS-7804, pp.214-222, 2013, Information and Communicatiaon Technology. 〈10.1007/978-3-642-36818-9_22〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01480177
Contributeur : Hal Ifip <>
Soumis le : mercredi 1 mars 2017 - 11:04:21
Dernière modification le : jeudi 2 mars 2017 - 01:04:26
Document(s) archivé(s) le : mardi 30 mai 2017 - 14:26:56

Fichier

978-3-642-36818-9_22_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Wayan Suparta, Kemal Alhasa. Estimation of Precipitable Water Vapor Using an Adaptive Neuro-fuzzy Inference System Technique. David Hutchison; Takeo Kanade; Madhu Sudan; Demetri Terzopoulos; Doug Tygar; Moshe Y. Vardi; Gerhard Weikum; Khabib Mustofa; Erich J. Neuhold; A Min Tjoa; Edgar Weippl; Ilsun You; Josef Kittler; Jon M. Kleinberg; Friedemann Mattern; John C. Mitchell; Moni Naor; Oscar Nierstrasz; C. Pandu Rangan; Bernhard Steffen. 1st International Conference on Information and Communication Technology (ICT-EurAsia), Mar 2013, Yogyakarta, Indonesia. Springer, Lecture Notes in Computer Science, LNCS-7804, pp.214-222, 2013, Information and Communicatiaon Technology. 〈10.1007/978-3-642-36818-9_22〉. 〈hal-01480177〉

Partager

Métriques

Consultations de la notice

40

Téléchargements de fichiers

72