Learning Commonalities in RDF

Sara El Hassad 1 François Goasdoué 1 Hélène Jaudoin 1
1 SHAMAN - Symbolic and Human-centric view of dAta MANagement
IRISA-D7 - GESTION DES DONNÉES ET DE LA CONNAISSANCE
Abstract : Finding the commonalities between descriptions of data or knowledge is a foundational reasoning problem of Machine Learning introduced in the 70's, which amounts to computing a least general generalization (lgg) of such descriptions. It has also started receiving consideration in Knowlegge Representation from the 90's, and recently in the Semantic Web field. We revisit this problem in the popular Resource Description Framework (RDF) of W3C, where descriptions are RDF graphs, i.e., a mix of data and knowledge. Notably, and in contrast to the literature, our solution to this problem holds for the entire RDF standard, i.e., we do not restrict RDF graphs in any way (neither their structure nor their semantics based on RDF entailment, i.e., inference) and, further, our algorithms can compute lggs of small-to-huge RDF graphs.
Type de document :
Communication dans un congrès
Extended Semantic Web Conference (ESWC), May 2017, Portoroz, Slovenia. 2017
Liste complète des métadonnées

https://hal.inria.fr/hal-01485862
Contributeur : François Goasdoué <>
Soumis le : vendredi 14 avril 2017 - 14:23:12
Dernière modification le : dimanche 16 avril 2017 - 01:06:09

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01485862, version 2

Citation

Sara El Hassad, François Goasdoué, Hélène Jaudoin. Learning Commonalities in RDF. Extended Semantic Web Conference (ESWC), May 2017, Portoroz, Slovenia. 2017. <hal-01485862v2>

Partager

Métriques

Consultations de
la notice

124

Téléchargements du document

8