Linked Open Government Data Analytics

Abstract : Although the recently launched Open Government Data (OGD) movement promised to provide a number of benefits, recent studies have shown that its full potential has not yet realized. The difficulty in exploiting open data seems surprising if we consider the huge importance data have in modern societies. In this paper we claim that the real value of OGD will unveil from performing data analytics on top of combined statistical datasets that were previously closed in disparate sources and can now be linked to provide unexpected and unexplored insights. To support this claim, we describe the linked OGD analytics concept along with its technical requirements and demonstrate its end-user value employing a use case related to UK general elections. The use case revealed that there is a significant relationship between the probability one of the two main political parties (i.e. Labour Party and Conservative Party) to win in a UK constituency and the unemployment rate in the same constituency.
Type de document :
Communication dans un congrès
Maria A. Wimmer; Marijn Janssen; Hans J. Scholl. 12th International Conference on Electronic Government (EGOV), Sep 2013, Koblenz, Germany. Springer, Lecture Notes in Computer Science, LNCS-8074, pp.99-110, 2013, Electronic Government. 〈10.1007/978-3-642-40358-3_9〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01490925
Contributeur : Hal Ifip <>
Soumis le : jeudi 16 mars 2017 - 10:47:11
Dernière modification le : vendredi 17 mars 2017 - 01:07:40
Document(s) archivé(s) le : samedi 17 juin 2017 - 13:12:11

Fichier

978-3-642-40358-3_9_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Evangelos Kalampokis, Efthimios Tambouris, Konstantinos Tarabanis. Linked Open Government Data Analytics. Maria A. Wimmer; Marijn Janssen; Hans J. Scholl. 12th International Conference on Electronic Government (EGOV), Sep 2013, Koblenz, Germany. Springer, Lecture Notes in Computer Science, LNCS-8074, pp.99-110, 2013, Electronic Government. 〈10.1007/978-3-642-40358-3_9〉. 〈hal-01490925〉

Partager

Métriques

Consultations de la notice

56

Téléchargements de fichiers

60