The Girsanov theorem without (so much) stochastic analysis

Antoine Lejay 1, 2
1 TOSCA - TO Simulate and CAlibrate stochastic models
CRISAM - Inria Sophia Antipolis - Méditerranée , IECL - Institut Élie Cartan de Lorraine : UMR7502
Abstract : In this pedagogical note, we construct the semi-group associated to a stochastic differential equation with a constant diffusion and a Lipschitz drift by composing over small times the semi-groups generated respectively by the Brownian motion and the drift part. Similarly to the interpretation of the Feynman-Kac formula through the Trotter-Kato-Lie formula in which the exponential term appears naturally, we construct by doing so an approximation of the exponential weight of the Girsanov theorem. As this approach only relies on the basic properties of the Gaussian distribution, it provides an alternative explanation of the form of the Girsanov weights without referring to a change of measure nor on stochastic calculus.
Type de document :
Chapitre d'ouvrage
Donati-Martin, Catherine; Lejay, Antoine; Rouault, Alain. Séminaire de Probabilités XLIX, 2215, Springer-Nature, 2018, 978-3-319-92419-9. 〈10.1007/978-3-319-92420-5_8〉. 〈https://link.springer.com/book/10.1007/978-3-319-92420-5〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01498129
Contributeur : Antoine Lejay <>
Soumis le : samedi 22 septembre 2018 - 09:23:04
Dernière modification le : jeudi 27 septembre 2018 - 16:07:21

Fichier

girsanov_FV_R1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Antoine Lejay. The Girsanov theorem without (so much) stochastic analysis. Donati-Martin, Catherine; Lejay, Antoine; Rouault, Alain. Séminaire de Probabilités XLIX, 2215, Springer-Nature, 2018, 978-3-319-92419-9. 〈10.1007/978-3-319-92420-5_8〉. 〈https://link.springer.com/book/10.1007/978-3-319-92420-5〉. 〈hal-01498129v3〉

Partager

Métriques

Consultations de la notice

42

Téléchargements de fichiers

7