A Probabilistic Approach to Organic Component Detection in Leishmania Infected Microscopy Images

Abstract : This paper proposes a fully automated method for annotating confocal microscopy images, through organic component detection and segmentation. The organic component detection is performed through adaptive segmentation using a two-level Otsu’s Method. Two probabilistic classifiers then analyze the detected regions, as to how many components may constitute each one. The first of these employs rule-based reasoning centered on the decreasing harmonic patterns observed in the region area density functions. The second one consists of a Support Vector Machine trained with features derived from the log likelihood ratios of incrementally Gaussian mixture modeling detected regions. The final step pairs the identified cellular and parasitic components, computing the standard infection ratios on biomedical research. Results indicate the proposed method is able to perform the identification and annotation processes on par with expert human subjects, constituting a viable alternative to the traditional manual approach.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 8th International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2012, Halkidiki, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-381 (Part I), pp.1-10, 2012, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-33409-2_1〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01521410
Contributeur : Hal Ifip <>
Soumis le : jeudi 11 mai 2017 - 17:10:31
Dernière modification le : vendredi 1 décembre 2017 - 01:16:31
Document(s) archivé(s) le : samedi 12 août 2017 - 13:55:34

Fichier

978-3-642-33409-2_1_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Pedro Nogueira, Luís Teófilo. A Probabilistic Approach to Organic Component Detection in Leishmania Infected Microscopy Images. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 8th International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2012, Halkidiki, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-381 (Part I), pp.1-10, 2012, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-33409-2_1〉. 〈hal-01521410〉

Partager

Métriques

Consultations de la notice

55

Téléchargements de fichiers

17