Semantic Web-Mining and Deep Vision for Lifelong Object Discovery

Abstract : Autonomous robots that are to assist humans in their daily lives must recognize and understand the meaning of objects in their environment. However, the open nature of the world means robots must be able to learn and extend their knowledge about previously unknown objects on-line. In this work we investigate the problem of unknown object hypotheses generation, and employ a semantic web-mining framework along with deep-learning-based object detectors. This allows us to make use of both visual and semantic features in combined hypotheses generation. Experiments on data from mobile robots in real world application deployments show that this combination improves performance over the use of either method in isolation.
Type de document :
Communication dans un congrès
IEEE International Conference on Robotics and Automation (ICRA), May 2017, Singapore, Singapore
Liste complète des métadonnées


https://hal.inria.fr/hal-01524902
Contributeur : Valerio Basile <>
Soumis le : vendredi 19 mai 2017 - 09:41:20
Dernière modification le : jeudi 15 juin 2017 - 09:09:35

Fichier

young17icra.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01524902, version 1

Collections

Citation

Jay Young, Lars Kunze, Valerio Basile, Elena Cabrio, Nick Hawes, et al.. Semantic Web-Mining and Deep Vision for Lifelong Object Discovery. IEEE International Conference on Robotics and Automation (ICRA), May 2017, Singapore, Singapore. <hal-01524902>

Partager

Métriques

Consultations de
la notice

221

Téléchargements du document

74