An ant-colony based approach for real-time implicit collaborative information seeking

Abstract : We propose an approach based on Swarm Intelligence — more specifically on Ant Colony Optimization (ACO) — to improve search engines’ performance and reduce information overload by exploiting collective users’ behavior. We designed and developed three different algorithms that employ an ACO-inspired strategy to provide implicit collaborative-seeking features in real time to search engines. The three different algorithms — NaïveRank, RandomRank, and SessionRank — leverage on different principles of ACO in order to exploit users’ interactions and provide them with more relevant results. We designed an evaluation experiment employing two widely used standard datasets of query-click logs issued to two major Web search engines. The results demonstrated how each algorithm is suitable to be employed in ranking results of different types of queries depending on users’ intent.
Type de document :
Article dans une revue
Information Processing and Management, Elsevier, 2017, 53 (3), pp.608 - 623. 〈10.1016/j.ipm.2016.12.005〉
Liste complète des métadonnées

Littérature citée [55 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01525753
Contributeur : Marie-France Sagot <>
Soumis le : jeudi 29 juin 2017 - 09:36:59
Dernière modification le : mercredi 11 avril 2018 - 01:57:37
Document(s) archivé(s) le : jeudi 18 janvier 2018 - 02:31:38

Fichier

malizia2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alessio Malizia, Kai A. Olsen, Tommaso Turchi, Pierluigi Crescenzi. An ant-colony based approach for real-time implicit collaborative information seeking. Information Processing and Management, Elsevier, 2017, 53 (3), pp.608 - 623. 〈10.1016/j.ipm.2016.12.005〉. 〈hal-01525753〉

Partager

Métriques

Consultations de la notice

158

Téléchargements de fichiers

98