Mutual Service Processes in Euclidean Spaces: Existence and Ergodicity

Abstract : Consider a set of objects, abstracted to points of a spatially stationary point process in $R d$ , that deliver to each other a service at a rate depending on their distance. Assume that the points arrive as a Poisson process and leave when their service requirements have been fulfilled. We show how such a process can be constructed and establish its ergodicity under fairly general conditions. We also establish a hierarchy of integral balance relations between the factorial moment measures and show that the time-stationary process exhibits a repulsivity property.
Type de document :
Article dans une revue
Queueing Systems, Springer Verlag, 2017, 86 (1-2), pp.95 - 140. 〈10.1007/s11134-017-9524-3〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01535925
Contributeur : Fabien Mathieu <>
Soumis le : vendredi 9 juin 2017 - 17:12:55
Dernière modification le : jeudi 26 avril 2018 - 10:28:59
Document(s) archivé(s) le : dimanche 10 septembre 2017 - 13:45:40

Fichiers

bacmatnor-f.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Relations

Citation

François Baccelli, Fabien Mathieu, Ilkka Norros. Mutual Service Processes in Euclidean Spaces: Existence and Ergodicity. Queueing Systems, Springer Verlag, 2017, 86 (1-2), pp.95 - 140. 〈10.1007/s11134-017-9524-3〉. 〈hal-01535925〉

Partager

Métriques

Consultations de la notice

251

Téléchargements de fichiers

54