A Taxonomy of Dirty Time-Oriented Data

Abstract : Data quality is a vital topic for business analytics in order to gain accurate insight and make correct decisions in many data-intensive industries. Albeit systematic approaches to categorize, detect, and avoid data quality problems exist, the special characteristics of time-oriented data are hardly considered. However, time is an important data dimension with distinct characteristics which affords special consideration in the context of dirty data. Building upon existing taxonomies of general data quality problems, we address ‘dirty’ time-oriented data, i.e., time-oriented data with potential quality problems. In particular, we investigated empirically derived problems that emerge with different types of time-oriented data (e.g., time points, time intervals) and provide various examples of quality problems of time-oriented data. By providing categorized information related to existing taxonomies, we establish a basis for further research in the field of dirty time-oriented data, and for the formulation of essential quality checks when preprocessing time-oriented data.
Type de document :
Communication dans un congrès
Gerald Quirchmayr; Josef Basl; Ilsun You; Lida Xu; Edgar Weippl. International Cross-Domain Conference and Workshop on Availability, Reliability, and Security (CD-ARES), Aug 2012, Prague, Czech Republic. Springer, Lecture Notes in Computer Science, LNCS-7465, pp.58-72, 2012, Multidisciplinary Research and Practice for Information Systems. 〈10.1007/978-3-642-32498-7_5〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01542440
Contributeur : Hal Ifip <>
Soumis le : lundi 19 juin 2017 - 17:01:19
Dernière modification le : mardi 20 juin 2017 - 01:06:36
Document(s) archivé(s) le : vendredi 15 décembre 2017 - 22:05:26

Fichier

978-3-642-32498-7_5_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Theresia Gschwandtner, Johannes Gärtner, Wolfgang Aigner, Silvia Miksch. A Taxonomy of Dirty Time-Oriented Data. Gerald Quirchmayr; Josef Basl; Ilsun You; Lida Xu; Edgar Weippl. International Cross-Domain Conference and Workshop on Availability, Reliability, and Security (CD-ARES), Aug 2012, Prague, Czech Republic. Springer, Lecture Notes in Computer Science, LNCS-7465, pp.58-72, 2012, Multidisciplinary Research and Practice for Information Systems. 〈10.1007/978-3-642-32498-7_5〉. 〈hal-01542440〉

Partager

Métriques

Consultations de la notice

70

Téléchargements de fichiers

21