Artificial Neural Networks Approach for the Prediction of Thermal Balance of SI Engine Using Ethanol-Gasoline Blends - Archive ouverte HAL Access content directly
Conference Papers Year : 2012

Artificial Neural Networks Approach for the Prediction of Thermal Balance of SI Engine Using Ethanol-Gasoline Blends

(1) , (1) , (1) , (1) , (1)
1

Abstract

This study deals with artificial neural network (ANN) modeling of a spark ignition engine to predict engine thermal balance. To acquire data for training and testing of ANN, a four-cylinder, four-stroke test engine was fuelled with ethanol-gasoline blended fuels with various percentages of ethanol and operated at different engine speeds and loads. The performance of the ANN was validated by comparing the prediction data set with the experimental results. Results showed that the ANN provided the best accuracy in modeling the thermal balance with correlation coefficient equal to 0.997, 0.998, 0.996 and 0.992 for useful work, heat lost through exhaust, heat lost to the cooling water and unaccounted losses respectively. The experimental results showed as the percentage of ethanol in the ethanol-gasoline blends is increased, the percentage of useful work is increased, while the heat lost to cooling water and exhaust are decreased compared to neat gasoline fuel operation.
Fichier principal
Vignette du fichier
978-3-642-32498-7_3_Chapter.pdf (142.49 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01542472 , version 1 (19-06-2017)

Licence

Attribution - CC BY 4.0

Identifiers

Cite

Mostafa Kiani Deh Kiani, Barat Ghobadian, Fathollah Ommi, Gholamhassan Najafi, Talal Yusaf. Artificial Neural Networks Approach for the Prediction of Thermal Balance of SI Engine Using Ethanol-Gasoline Blends. International Cross-Domain Conference and Workshop on Availability, Reliability, and Security (CD-ARES), Aug 2012, Prague, Czech Republic. pp.31-43, ⟨10.1007/978-3-642-32498-7_3⟩. ⟨hal-01542472⟩
112 View
179 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More