Hybrid Negative Selection Approach for Anomaly Detection

Abstract : This paper describes a b-v model which is enhanced version of the negative selection algorithm (NSA). In contrast to formerly developed approaches, binary and real-valued detectors are simultaneously used. The reason behind developing this hybrid is our willingness to overcome the scalability problems occuring when only one type of detectors is used. High-dimensional datasets are a great challenge for NSA. But the quality of generated detectors, duration of learning stage as well as duration of classification stage need a careful treatment also. Thus, we discuss various versions of the b-v model developed to increase its efficiency. Versatility of proposed approach was intensively tested by using popular testbeds concerning domains like computer’s security (intruders and spam detection) and recognition of handwritten words.
Type de document :
Communication dans un congrès
Agostino Cortesi; Nabendu Chaki; Khalid Saeed; Sławomir Wierzchoń. 11th International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2012, Venice, Italy. Springer, Lecture Notes in Computer Science, LNCS-7564, pp.242-253, 2012, Computer Information Systems and Industrial Management. 〈10.1007/978-3-642-33260-9_21〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01551730
Contributeur : Hal Ifip <>
Soumis le : vendredi 30 juin 2017 - 14:43:20
Dernière modification le : samedi 1 juillet 2017 - 01:06:46
Document(s) archivé(s) le : lundi 22 janvier 2018 - 20:25:06

Fichier

978-3-642-33260-9_21_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Andrzej Chmielewski, Sławomir Wierzchoń. Hybrid Negative Selection Approach for Anomaly Detection. Agostino Cortesi; Nabendu Chaki; Khalid Saeed; Sławomir Wierzchoń. 11th International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2012, Venice, Italy. Springer, Lecture Notes in Computer Science, LNCS-7564, pp.242-253, 2012, Computer Information Systems and Industrial Management. 〈10.1007/978-3-642-33260-9_21〉. 〈hal-01551730〉

Partager

Métriques

Consultations de la notice

193

Téléchargements de fichiers

29