Detecting Mobile Spam Botnets Using Artificial immune Systems

Abstract : Malicious software infects large numbers of computers around the world. Once compromised, the computers become part of a botnet and take part in many forms of criminal activity, including the sending of unsolicited commercial email or spam. As mobile devices become tightly integrated with the Internet, associated threats such as botnets have begun to migrate onto the devices. This paper describes a technique based on artificial immune systems to detect botnet spamming programs on Android phones. Experimental results demonstrate that the botnet detection technique accurately identifies spam. The implementation of this technique could reduce the attractiveness of mobile phones as a platform for spammers.
Type de document :
Communication dans un congrès
Gilbert Peterson; Sujeet Shenoi. 7th Digital Forensics (DF), Jan 2011, Orlando, FL, United States. Springer, IFIP Advances in Information and Communication Technology, AICT-361, pp.183-192, 2011, Advances in Digital Forensics VII. 〈10.1007/978-3-642-24212-0_14〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01569560
Contributeur : Hal Ifip <>
Soumis le : jeudi 27 juillet 2017 - 08:22:32
Dernière modification le : vendredi 1 décembre 2017 - 01:16:43

Fichier

978-3-642-24212-0_14_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Ickin Vural, Hein Venter. Detecting Mobile Spam Botnets Using Artificial immune Systems. Gilbert Peterson; Sujeet Shenoi. 7th Digital Forensics (DF), Jan 2011, Orlando, FL, United States. Springer, IFIP Advances in Information and Communication Technology, AICT-361, pp.183-192, 2011, Advances in Digital Forensics VII. 〈10.1007/978-3-642-24212-0_14〉. 〈hal-01569560〉

Partager

Métriques

Consultations de la notice

49

Téléchargements de fichiers

22