Quantization of Adulteration Ratio of Raw Cow Milk by Least Squares Support Vector Machines (LS-SVM) and Visible/Near Infrared Spectroscopy

Abstract : Raw cow milk has short supply market in summer and over supply in winter, which causes consumers and dairy industry concern about the quality of raw milk whether is adulated with reconstituted milk (powdered milk). This study prepared 307 raw cow milk samples with various adulteration ratios 0%, 2%, 5%, 10%, 20%, 30%, 50%, 75%, and 100% of powdered milk. Least square support vector machine (LS-SVM) was applied to calibrate the prediction model for adulteration ratio. Grid search approach was used to find the better value of network parameters of γ and σ2. Results show that R2 ranges from 0.9662 to 0.9777 for testing data set with plate surface and four concave regions. Scatter plot of testing data showed that adulteration ratio above 10% clearly differs from 0% samples.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.130-139, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_15〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01571346
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 août 2017 - 11:41:37
Dernière modification le : vendredi 1 décembre 2017 - 01:16:22

Fichier

978-3-642-23957-1_15_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Ching-Lu Hsieh, Chao-Yung Hung, Ching-Yun Kuo. Quantization of Adulteration Ratio of Raw Cow Milk by Least Squares Support Vector Machines (LS-SVM) and Visible/Near Infrared Spectroscopy. Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.130-139, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_15〉. 〈hal-01571346〉

Partager

Métriques

Consultations de la notice

26

Téléchargements de fichiers

16