Finding 3G Mobile Network Cells with Similar Radio Interface Quality Problems

Abstract : A mobile network provides a continuous stream of data describing the performance of its cells. Most of the data describes cells with acceptable performance. Detecting and analysing mobile network cells with quality problems from the data stream is a tedious and continuous problem for network operators. Anomaly detection can be used to identify cells, whose performance deviates from the average and which are potentially having some sub-optimal configuration or are in some error condition. In this paper we provide two methods to detect such anomalously behaving cells. The first method estimates the distance from a cell to an optimal state and the second one is based on detecting the support of the data distribution using One-Class Support Vector Machine (OC-SVM). We use the methods to analyse a data sample from a live 3G network and compare the analysis results. We also show how clustering of found anomalies can be used to find similarly behaving cells that can benefit from the same corrective measures.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.392-401, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_44〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01571349
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 août 2017 - 11:41:40
Dernière modification le : vendredi 1 décembre 2017 - 01:16:23

Fichier

978-3-642-23957-1_44_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Pekka Kumpulainen, Mika Särkioja, Mikko Kylväjä, Kimmo Hätönen. Finding 3G Mobile Network Cells with Similar Radio Interface Quality Problems. Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.392-401, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_44〉. 〈hal-01571349〉

Partager

Métriques

Consultations de la notice

17

Téléchargements de fichiers

6