Predicting Postgraduate Students’ Performance Using Machine Learning Techniques

Abstract : The ability to timely predict the academic performance tendency of postgraduate students is very important in MSc programs and useful for tutors. The scope of this research is to investigate which is the most efficient machine learning technique in predicting the final grade of Ionian University Informatics postgraduate students. Consequently, five academic courses are chosen, each constituting an individual dataset, and six well-known classification algorithms are experimented with. Furthermore, the datasets are enriched with demographic, in-term performance and in-class behaviour features. The small size of the datasets and the imbalance in the distribution of class values are the main research challenges of the present work. Several techniques, like resampling and feature selection, are employed to address these issues, for the first time in a performance prediction application. Naïve Bayes and 1-NN achieved the best prediction results, which are very satisfactory compared to those of similar approaches.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-364 (Part II), pp.159-168, 2011, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-23960-1_20〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01571486
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 août 2017 - 16:22:27
Dernière modification le : vendredi 1 décembre 2017 - 01:16:25

Fichier

978-3-642-23960-1_20_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Maria Koutina, Katia Kermanidis. Predicting Postgraduate Students’ Performance Using Machine Learning Techniques. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-364 (Part II), pp.159-168, 2011, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-23960-1_20〉. 〈hal-01571486〉

Partager

Métriques

Consultations de la notice

140

Téléchargements de fichiers

475