Redundant Modular Reduction Algorithms

Abstract : We present modular reduction algorithms over finite fields of large characteristic that allow the use of redundant modular arithmetic. This technique provides constant time reduction algorithms. Moreover, it can also be used to strengthen the differential side-channel resistance of asymmetric cryptosystems. We propose modifications to the classic Montgomery and Barrett reduction algorithms in order to have efficient and resistant modular reduction methods. Our algorithms are called dynamic redundant reductions as random masks are intrinsically added within each reduction for a small overhead. This property is useful in order to thwart recent refined attacks on public key algorithms.
Type de document :
Communication dans un congrès
Emmanuel Prouff. 10th Smart Card Research and Advanced Applications (CARDIS), Sep 2011, Leuven, Belgium. Springer, Lecture Notes in Computer Science, LNCS-7079, pp.102-114, 2011, Smart Card Research and Advanced Applications. 〈10.1007/978-3-642-27257-8_7〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01596301
Contributeur : Hal Ifip <>
Soumis le : mercredi 27 septembre 2017 - 14:46:24
Dernière modification le : mardi 10 octobre 2017 - 13:47:58
Document(s) archivé(s) le : jeudi 28 décembre 2017 - 13:59:31

Fichier

978-3-642-27257-8_7_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Vincent Dupaquis, Alexandre Venelli. Redundant Modular Reduction Algorithms. Emmanuel Prouff. 10th Smart Card Research and Advanced Applications (CARDIS), Sep 2011, Leuven, Belgium. Springer, Lecture Notes in Computer Science, LNCS-7079, pp.102-114, 2011, Smart Card Research and Advanced Applications. 〈10.1007/978-3-642-27257-8_7〉. 〈hal-01596301〉

Partager

Métriques

Consultations de la notice

23

Téléchargements de fichiers

43