Dynamic Workload Adjustments in Human-Machine Systems Based on GSR Features

Abstract : Workload is found to be a critical factor driving human behavior in human-machine interactions in modern complex high-risk domains. This paper presents a dynamic workload adjustment feedback loop with a dynamic cognitive load (CL) adaptation model to control workload adjustment during human-machine interaction. In this model, physiological signals such as Galvanic Skin Response (GSR) are employed to obtain passive human sensing data. By analyzing the obtained sensing data in real-time, the task difficulty levels are adaptively adjusted to better fit the user during working time. The experimental results showed that SVM outperformed other methods in offline CL classifications, while Naïve Bayes outperformed other methods in online CL level classifications. The CL adaptation model 1 (average performance is 87.5 %) outperformed the adaptation model 2 during the dynamic workload adjustment.
Type de document :
Communication dans un congrès
15th Human-Computer Interaction (INTERACT), Sep 2015, Bamberg, Germany. Lecture Notes in Computer Science, LNCS-9296 (Part I), pp.550-558, 2015, Human-Computer Interaction – INTERACT 2015. 〈10.1007/978-3-319-22701-6_40〉
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01599661
Contributeur : Hal Ifip <>
Soumis le : lundi 2 octobre 2017 - 13:13:46
Dernière modification le : mardi 3 octobre 2017 - 10:29:54

Fichier

346937_1_En_40_Chapter.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Jianlong Zhou, Ju Jung, Fang Chen. Dynamic Workload Adjustments in Human-Machine Systems Based on GSR Features. 15th Human-Computer Interaction (INTERACT), Sep 2015, Bamberg, Germany. Lecture Notes in Computer Science, LNCS-9296 (Part I), pp.550-558, 2015, Human-Computer Interaction – INTERACT 2015. 〈10.1007/978-3-319-22701-6_40〉. 〈hal-01599661〉

Partager

Métriques

Consultations de la notice

50

Téléchargements de fichiers

5