Skip to Main content Skip to Navigation
Conference papers

Generalized Polynomial Decomposition for S-boxes with Application to Side-Channel Countermeasures

Dahmun Goudarzi 1, 2, 3, 4 Matthieu Rivain 1 Damien Vergnaud 5, 2, 4 Srinivas Vivek 6
3 CASCADE - Construction and Analysis of Systems for Confidentiality and Authenticity of Data and Entities
DI-ENS - Département d'informatique de l'École normale supérieure, CNRS - Centre National de la Recherche Scientifique : UMR 8548, Inria de Paris
5 CASCADE - Construction and Analysis of Systems for Confidentiality and Authenticity of Data and Entities
DI-ENS - Département d'informatique de l'École normale supérieure, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR 8548
Abstract : Masking is a widespread countermeasure to protect implementations of block-ciphers against side-channel attacks. Several masking schemes have been proposed in the literature that rely on the efficient decomposition of the underlying s-box(es). We propose a generalized decomposition method for s-boxes that encompasses several previously proposed methods while providing new trade-offs. It allows to evaluate nλ-bit to mλ-bit s-boxes for any integers n,m,λ≥1 by seeing it a sequence of mn-variate polynomials over F2λ and by trying to minimize the number of multiplications over F2λ.
Document type :
Conference papers
Complete list of metadata

https://hal.inria.fr/hal-01613764
Contributor : Damien Vergnaud <>
Submitted on : Tuesday, October 10, 2017 - 10:03:15 AM
Last modification on : Tuesday, September 22, 2020 - 3:47:04 AM

Links full text

Identifiers

Collections

Citation

Dahmun Goudarzi, Matthieu Rivain, Damien Vergnaud, Srinivas Vivek. Generalized Polynomial Decomposition for S-boxes with Application to Side-Channel Countermeasures. Cryptographic Hardware and Embedded Systems - CHES 2017, Sep 2017, Taipei, Taiwan. pp.154-171, ⟨10.1007/978-3-319-66787-4_8⟩. ⟨hal-01613764⟩

Share

Metrics

Record views

301