Study on the Mutton Freshness Using Multivariate Analysis Based on Texture Characteristics

Abstract : Aiming at discrimination and prediction of mutton freshness by texture profile, the texture parameters of mutton stored at 1°C, 4°C and Room temperature were analyzed. The analysis methods of Canonical Discriminant Analysis (CDA) and Principal component analysis (PCA) were used to analyze texture parameters of mutton. The results of PCA showed that mutton sample stored at three temperatures clustered into groups according to their freshness, changing along the direction of PC1. Better classification results were found by CDA. The changing trends of mutton freshness were described by Multiple Linear Regression (MLR) and Partial Least Square analysis (PLS), and effective predictive models were found for indices of days stored, TVB-N and pH using texture parameters. With optimum analysis methods, texture parameters could classify and predict freshness of mutton stored at three temperatures. Texture profiles were proved to be a fast and objective tool for the prediction of mutton freshness.
Type de document :
Communication dans un congrès
9th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2015, Beijing, China. IFIP Advances in Information and Communication Technology, AICT-479 (Part II), pp.143-154, 2016, Computer and Computing Technologies in Agriculture IX. 〈10.1007/978-3-319-48354-2_15〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01614168
Contributeur : Hal Ifip <>
Soumis le : mardi 10 octobre 2017 - 15:41:38
Dernière modification le : mardi 10 octobre 2017 - 15:54:22

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Xiaojing Tian, Jun Wang, Jutian Yang, Shien Chen, Zhongren Ma. Study on the Mutton Freshness Using Multivariate Analysis Based on Texture Characteristics. 9th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2015, Beijing, China. IFIP Advances in Information and Communication Technology, AICT-479 (Part II), pp.143-154, 2016, Computer and Computing Technologies in Agriculture IX. 〈10.1007/978-3-319-48354-2_15〉. 〈hal-01614168〉

Partager

Métriques

Consultations de la notice

10