Probabilistic Analysis for Mixed Criticality Systems using Fixed Priority Preemptive Scheduling

Abstract : This paper introduces probabilistic analysis for fixed priority preemptive scheduling of mixed criticality systems on a uniprocessor using the Adaptive Mixed Criticality (AMC) and Static Mixed Criticality (SMC) schemes. We compare this analysis to existing deterministic methods, highlighting the performance gains that can be obtained by utilising more detailed information about worst-case execution time estimates described in terms of probability distributions. Besides improvements in schedulability, we also demonstrate signiicant gains in terms of the budgets that can be allocated to LO-criticality tasks. A preliminary version [26] of the research described in this paper was published in the Workshop on Mixed Criticality Systems (WMC) in 2016. In this paper, we correct the analysis given in [26], ensuring that the schedulability of HI-criticality tasks does not depend on the behavior of LO-criticality tasks. Further, we provide an alternative analysis (in Section 4.4) and show how support for LO-criticality tasks can be improved via increased execution time budgets (in Section 4.6).
Type de document :
Communication dans un congrès
RTNS 2017 - International Conference on Real-Time Networks and Systems, Oct 2017, Grenoble, France. pp.10, 2017, 〈10.1145/3139258.3139276〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01614684
Contributeur : Dorin Maxim <>
Soumis le : mercredi 11 octobre 2017 - 15:58:59
Dernière modification le : jeudi 11 janvier 2018 - 06:25:23

Fichier

RTNS2017_DMaxim_pMC_final.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Dorin Maxim, Robert Davis, Liliana Cucu-Grosjean, Arvind Easwaran. Probabilistic Analysis for Mixed Criticality Systems using Fixed Priority Preemptive Scheduling. RTNS 2017 - International Conference on Real-Time Networks and Systems, Oct 2017, Grenoble, France. pp.10, 2017, 〈10.1145/3139258.3139276〉. 〈hal-01614684〉

Partager

Métriques

Consultations de la notice

125

Téléchargements de fichiers

34