A Cyclic Cascaded CRFs Model for Opinion Targets Identification Based on Rules and Statistics

Abstract : Opinion sentences on e-commerce platform, microblog and forum contain lots of emotional information. And opinion targets identification plays an import role in huge potential commercial value mining, especially in sales decision making and development trend forecasting. Traditional CRFs-based method has achieved a pretty good result to a certain extent. However, its discovery ability of out-of-vocabulary words and optimization of the mining model are both insufficient. We propose a novel cyclic cascaded CRFs model for opinion targets identification which incorporates rule-based and statistic-based methods. The approach acquires candidate opinion targets through part-of-speech, syntactic and semantic rules, and integrates them in a cyclic cascaded CRFs model for the accurate opinion targets identification. Experimental results on COAE2014 dataset show the outperformance of this method.
Type de document :
Communication dans un congrès
9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. IFIP Advances in Information and Communication Technology, AICT-486, pp.267-275, 2016, Intelligent Information Processing VIII. 〈10.1007/978-3-319-48390-0_27〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01614995
Contributeur : Hal Ifip <>
Soumis le : mercredi 11 octobre 2017 - 16:58:02
Dernière modification le : mercredi 28 mars 2018 - 13:26:01
Document(s) archivé(s) le : vendredi 12 janvier 2018 - 15:20:22

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Hengxun Li, Chun Liao, Guangjun Hu, Ning Wang. A Cyclic Cascaded CRFs Model for Opinion Targets Identification Based on Rules and Statistics. 9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. IFIP Advances in Information and Communication Technology, AICT-486, pp.267-275, 2016, Intelligent Information Processing VIII. 〈10.1007/978-3-319-48390-0_27〉. 〈hal-01614995〉

Partager

Métriques

Consultations de la notice

46