Direction-of-Arrival Estimation for CS-MIMO Radar Using Subspace Sparse Bayesian Learning

Abstract : We address the problem of direction-of-arrival (DOA) estimation for compressive sensing based multiple-input multiple-output (CS-MIMO) radar. The spatial sparsity of the targets enables CS to be desirable for DOA estimation. By discretizing the possible target angles, a overcomplete dictionary is constructed for DOA estimation. A structural sparsity Bayesian learning framework is presented for support recovery. To improve the recovery accuracy and speed up the Bayesian iteration, a subspace sparse Bayesian learning algorithm is developed. The proposed scheme, which needs less iteration steps, can provides high precision DOA estimation performance for CS-MIMO radar, even at the condition of low signal-to-noise ratio and coherent sources. Simulation results verify the usefulness of our scheme.
Type de document :
Communication dans un congrès
9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. IFIP Advances in Information and Communication Technology, AICT-486, pp.31-38, 2016, Intelligent Information Processing VIII. 〈10.1007/978-3-319-48390-0_4〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01614998
Contributeur : Hal Ifip <>
Soumis le : mercredi 11 octobre 2017 - 16:58:10
Dernière modification le : mercredi 11 octobre 2017 - 17:00:28

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Yang Bin, Huang Dongmei, Li Ding. Direction-of-Arrival Estimation for CS-MIMO Radar Using Subspace Sparse Bayesian Learning. 9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. IFIP Advances in Information and Communication Technology, AICT-486, pp.31-38, 2016, Intelligent Information Processing VIII. 〈10.1007/978-3-319-48390-0_4〉. 〈hal-01614998〉

Partager

Métriques

Consultations de la notice

15