Anomalous Behavior Detection in Crowded Scenes Using Clustering and Spatio-Temporal Features

Abstract : Anomalous behavior detection in crowded and unanticipated scenarios is an important problem in real-life applications. Detection of anomalous behaviors such as people standing statically and loitering around a place are the focus of this paper. In order to detect anomalous events and objects, ViBe was used for background modeling and object detection at first. Then, a Kalman filter and Hungarian cost algorithm were implemented for tracking and generating trajectories of people. Next, spatio-temporal features were extracted and represented. Finally, hyperspherical clustering was used for anomaly detection in an unsupervised manner. We investigate three different approaches to extracting and representing spatio-temporal features, and we demonstrate the effectiveness of our proposed feature representation on a standard benchmark dataset and a real-life video surveillance environment.
Type de document :
Communication dans un congrès
9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. IFIP Advances in Information and Communication Technology, AICT-486, pp.132-141, 2016, Intelligent Information Processing VIII. 〈10.1007/978-3-319-48390-0_14〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01614999
Contributeur : Hal Ifip <>
Soumis le : mercredi 11 octobre 2017 - 16:58:13
Dernière modification le : mercredi 11 octobre 2017 - 17:00:28
Document(s) archivé(s) le : vendredi 12 janvier 2018 - 15:50:09

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Meng Yang, Sutharshan Rajasegarar, Aravinda Rao, Christopher Leckie, Marimuthu Palaniswami. Anomalous Behavior Detection in Crowded Scenes Using Clustering and Spatio-Temporal Features. 9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. IFIP Advances in Information and Communication Technology, AICT-486, pp.132-141, 2016, Intelligent Information Processing VIII. 〈10.1007/978-3-319-48390-0_14〉. 〈hal-01614999〉

Partager

Métriques

Consultations de la notice

43