Collective Interpretation and Potential Joint Information Maximization

Abstract : The present paper aims to propose a new type of information-theoretic method called “potential joint information maximization”. The joint information maximization has an effect to reduce the number of jointly fired neurons and then to stabilize the production of final representations. Then, the final connection weights are collectively interpreted by averaging weights produced by different data sets. The method was applied to the data set of rebel participation among youths. The result show that final weights could be collectively interpreted and only one feature could be extracted. In addition, generalization performance could be improved.
Type de document :
Communication dans un congrès
9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. IFIP Advances in Information and Communication Technology, AICT-486, pp.12-21, 2016, Intelligent Information Processing VIII. 〈10.1007/978-3-319-48390-0_2〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01615007
Contributeur : Hal Ifip <>
Soumis le : mercredi 11 octobre 2017 - 16:58:33
Dernière modification le : mercredi 11 octobre 2017 - 17:00:25
Document(s) archivé(s) le : vendredi 12 janvier 2018 - 15:26:46

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Ryotaro Kamimura. Collective Interpretation and Potential Joint Information Maximization. 9th International Conference on Intelligent Information Processing (IIP), Nov 2016, Melbourne, VIC, Australia. IFIP Advances in Information and Communication Technology, AICT-486, pp.12-21, 2016, Intelligent Information Processing VIII. 〈10.1007/978-3-319-48390-0_2〉. 〈hal-01615007〉

Partager

Métriques

Consultations de la notice

223