Solving the TTC'16 Class Responsibility Assignment Case Study with SIGMA and Multi-Objective Genetic Algorithms

Abstract : In this paper we describe a solution for the Transformation Tool Contest 2016 (TTC'16) Class Responsibility Assignment (CRA) case study using Sigma, a family of Scala internal Domain-Specific Languages (DSLs) that provides an expressive and efficient API for model consistency checking and model transformations. Since the Class Responsibility Assignment problem is a search-based problem, we base our solution on multi-objective genetic algorithms. Concretely, we use NSGA-III and SPEA2 to minimize the coupling between classes' structural features and to maximize their cohesion.
Type de document :
Communication dans un congrès
Transformation Tool Contest, Jul 2016, Vienna, Austria. 2016
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01615255
Contributeur : Krikava Filip <>
Soumis le : jeudi 12 octobre 2017 - 10:49:29
Dernière modification le : mardi 27 février 2018 - 14:19:51

Fichier

TTC_2016_paper_11.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01615255, version 1

Citation

Filip Křikava. Solving the TTC'16 Class Responsibility Assignment Case Study with SIGMA and Multi-Objective Genetic Algorithms. Transformation Tool Contest, Jul 2016, Vienna, Austria. 2016. 〈hal-01615255〉

Partager

Métriques

Consultations de la notice

9

Téléchargements de fichiers

9