Dynamic Seed Genetic Algorithm to Solve Job Shop Scheduling Problems

Abstract : This paper proposes a simple implementation of genetic algorithm with dynamic seed to solve deterministic job shop scheduling problems. The proposed methodology relies on a simple indirect binary representation of the chromosome and simple genetic operators (one-point crossover and bit-flip mutation), and it works by changing a seed that generates a solution from time to time, initially defined by the original sequencing of the problem addressed, and then adopting the best individual from the past runs of the GA as the seed for the next runs. The methodology was compared to three different approaches found in recent researches, and its results demonstrate that despite not finding the best results, the methodology, while being easy to be implemented, has its value and can be a starting point to more researches, combining it with other heuristics methods that rely in GA and other evolutionary algorithms as well.
Type de document :
Communication dans un congrès
IFIP International Conference on Advances in Production Management Systems (APMS), Sep 2016, Iguassu Falls, Brazil. IFIP Advances in Information and Communication Technology, AICT-488, pp.170-177, 2016, Advances in Production Management Systems. Initiatives for a Sustainable World. 〈10.1007/978-3-319-51133-7_21〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01615722
Contributeur : Hal Ifip <>
Soumis le : jeudi 12 octobre 2017 - 16:39:55
Dernière modification le : vendredi 1 décembre 2017 - 01:17:12

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Flávio Grassi, Pedro Schimit, Fabio Pereira. Dynamic Seed Genetic Algorithm to Solve Job Shop Scheduling Problems. IFIP International Conference on Advances in Production Management Systems (APMS), Sep 2016, Iguassu Falls, Brazil. IFIP Advances in Information and Communication Technology, AICT-488, pp.170-177, 2016, Advances in Production Management Systems. Initiatives for a Sustainable World. 〈10.1007/978-3-319-51133-7_21〉. 〈hal-01615722〉

Partager

Métriques

Consultations de la notice

65