Industrial IoT Gateway with Machine Learning for Smart Manufacturing

Abstract : Working together is important aspect of future industry. Therefore, technologies like Internet of Things (IoT), cloud computing, SOA give rise to another industrial revolution. We propose here a concept definition, which focuses on data acquisition, integration and predictive control in the industry. The concept consists of industrial IoT gateway, cloud services and machine learning services. We used machine learning to verify our data acquisition solution and we implemented prediction control as a cloud service. Finally, proposed solution will exceed boundaries inside ICS (Information and Control System), improve flexibility, interoperability and test plant prediction control in smart manufacturing.
Type de document :
Communication dans un congrès
IFIP International Conference on Advances in Production Management Systems (APMS), Sep 2016, Iguassu Falls, Brazil. IFIP Advances in Information and Communication Technology, AICT-488, pp.759-766, 2016, Advances in Production Management Systems. Initiatives for a Sustainable World. 〈10.1007/978-3-319-51133-7_89〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01615742
Contributeur : Hal Ifip <>
Soumis le : jeudi 12 octobre 2017 - 16:40:57
Dernière modification le : vendredi 1 décembre 2017 - 01:17:11

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Tomáš Lojka, Martin Miškuf, Iveta Zolotová. Industrial IoT Gateway with Machine Learning for Smart Manufacturing. IFIP International Conference on Advances in Production Management Systems (APMS), Sep 2016, Iguassu Falls, Brazil. IFIP Advances in Information and Communication Technology, AICT-488, pp.759-766, 2016, Advances in Production Management Systems. Initiatives for a Sustainable World. 〈10.1007/978-3-319-51133-7_89〉. 〈hal-01615742〉

Partager

Métriques

Consultations de la notice

17