Early Diagnosis of Alzheimer’s Disease Using Subject-Specific Models of FDG-PET Data

Ninon Burgos 1 Jorge Samper-González 1 M. Jorge Cardoso 2 Stanley Durrleman 1 Sébastien Ourselin 2 Olivier Colliot 1
1 ARAMIS - Algorithms, models and methods for images and signals of the human brain
UPMC - Université Pierre et Marie Curie - Paris 6, Inria de Paris, ICM - Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute
Abstract : Background: In machine learning classification methods developed for dementia studies, neuroimaging features, e.g. glucose consumption extracted from PET images, are often used to draw the border that differentiates normality from abnormality. However, these features are affected by the anatomical variability present in the population, which acts as a confounding factor making the task of finding the frontier (i.e. the decision function) between normality and abnormality very challenging.
Type de document :
Communication dans un congrès
AAIC 2017 - Alzheimer's Association International Conference, Jul 2017, London, United Kingdom. 13 (7), pp.1-2, 2017, 〈10.1016/j.jalz.2017.06.1618〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01621383
Contributeur : Ninon Burgos <>
Soumis le : mercredi 25 octobre 2017 - 10:14:14
Dernière modification le : lundi 10 septembre 2018 - 14:16:05
Document(s) archivé(s) le : vendredi 26 janvier 2018 - 12:37:22

Fichier

Burgos_AAIC_2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Ninon Burgos, Jorge Samper-González, M. Jorge Cardoso, Stanley Durrleman, Sébastien Ourselin, et al.. Early Diagnosis of Alzheimer’s Disease Using Subject-Specific Models of FDG-PET Data. AAIC 2017 - Alzheimer's Association International Conference, Jul 2017, London, United Kingdom. 13 (7), pp.1-2, 2017, 〈10.1016/j.jalz.2017.06.1618〉. 〈hal-01621383〉

Partager

Métriques

Consultations de la notice

208

Téléchargements de fichiers

41