A Statistical, Grammar-Based Approach to Micro-Planning

Claire Gardent 1 Laura Perez-Beltrachini 1
1 SYNALP - Natural Language Processing : representations, inference and semantics
LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : While there has been much work in recent years on data-driven natural language generation, little attention has been paid to the fine grained interactions that arise during micro-planning between aggregation, surface realization and sentence segmentation. In this paper, we propose a hybrid symbolic/statistical approach to jointly model these interactions. Our approach integrates a small handwritten grammar, a statistical hypertagger and a surface realization algorithm. It is applied to the verbalization of knowledge base queries and tested on 13 knowledge bases to demonstrate domain independence. We evaluate our approach in several ways. A quantitative analysis shows that the hybrid approach outperforms a purely symbolic approach in terms of both speed and coverage. Results from a human study indicate that users find the output of this hybrid statistic/symbolic system more fluent than both a template-and a purely symbolic grammar-based approach. Finally, we illustrate by means of examples that our approach can account for various factors impacting aggregation, sentence segmentation and surface realization.
Type de document :
Article dans une revue
Computational Linguistics, Massachusetts Institute of Technology Press (MIT Press), 2017, 〈10.1162/COLI_a_00273〉
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

Contributeur : Claire Gardent <>
Soumis le : mercredi 25 octobre 2017 - 16:01:19
Dernière modification le : vendredi 1 mars 2019 - 14:41:11
Document(s) archivé(s) le : vendredi 26 janvier 2018 - 15:20:25


Fichiers produits par l'(les) auteur(s)



Claire Gardent, Laura Perez-Beltrachini. A Statistical, Grammar-Based Approach to Micro-Planning. Computational Linguistics, Massachusetts Institute of Technology Press (MIT Press), 2017, 〈10.1162/COLI_a_00273〉. 〈hal-01623758〉



Consultations de la notice


Téléchargements de fichiers