Normalized Euclidean Distance Matrices for Human Motion Retargeting

Antonin Bernardin 1 Ludovic Hoyet 1 Antonio Mucherino 1 Douglas S. Gonçalves 2, 3 Franck Multon 4, 1
1 MIMETIC - Analysis-Synthesis Approach for Virtual Human Simulation
UR2 - Université de Rennes 2, Inria Rennes – Bretagne Atlantique , IRISA_D6 - MEDIA ET INTERACTIONS
2 ALGCO - Algorithmes, Graphes et Combinatoire
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : In character animation, it is often the case that motions created or captured on a specific morphology need to be reused on characters having a different morphology while maintaining specific relationships such as body contacts or spatial relationships between body parts. This process, called motion retargeting, requires determining which body part relationships are important in a given animation. This paper presents a novel frame-based approach to motion retargeting which relies on a normalized representation of body joints distances. We propose to abstract postures by computing all the inter-joint distances of each animation frame and store them in Euclidean Distance Matrices (EDMs). They 1) present the benefits of capturing all the subtle relationships between body parts, 2) can be adapted through a normalization process to create a morphology-independent distance-based representation, and 3) can be used to efficiently compute retargeted joint positions best satisfying newly computed distances. We demonstrate that normalized EDMs can be efficiently applied to a different skeletal morphology by using a Distance Geometry Problem (DGP) approach, and present results on a selection of motions and skeletal morphologies. Our approach opens the door to a new formulation of motion retargeting problems, solely based on a normalized distance representation.
Type de document :
Communication dans un congrès
MIG 2017 - Motion in Games, Nov 2017, Barcelona, Spain. 〈10.1145/3136457.3136466〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01632850
Contributeur : Antonio Mucherino <>
Soumis le : vendredi 10 novembre 2017 - 20:07:07
Dernière modification le : jeudi 11 janvier 2018 - 06:28:15

Fichier

a15-bernardin.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Antonin Bernardin, Ludovic Hoyet, Antonio Mucherino, Douglas S. Gonçalves, Franck Multon. Normalized Euclidean Distance Matrices for Human Motion Retargeting. MIG 2017 - Motion in Games, Nov 2017, Barcelona, Spain. 〈10.1145/3136457.3136466〉. 〈hal-01632850〉

Partager

Métriques

Consultations de la notice

153

Téléchargements de fichiers

24