An Overflow Free Fixed-point Eigenvalue Decomposition Algorithm: Case Study of Dimensionality Reduction in Hyperspectral Images - Archive ouverte HAL Access content directly
Conference Papers Year : 0028

An Overflow Free Fixed-point Eigenvalue Decomposition Algorithm: Case Study of Dimensionality Reduction in Hyperspectral Images

(1) , (2) , (3)
1
2
3
Anand S Sahadevan
  • Function : Author
  • PersonId : 1022872
Tapan Pradhan
  • Function : Author
  • PersonId : 1022873

Abstract

We consider the problem of enabling robust range estimation of eigenvalue decomposition (EVD) algorithm for a reliable fixed-point design. The simplicity of fixed-point circuitry has always been so tempting to implement EVD algorithms in fixed-point arithmetic. Working towards an effective fixed-point design, integer bit-width allocation is a significant step which has a crucial impact on accuracy and hardware efficiency. This paper investigates the shortcomings of the existing range estimation methods while deriving bounds for the variables of the EVD algorithm. In light of the circumstances, we introduce a range estimation approach based on vector and matrix norm properties together with a scaling procedure that maintains all the assets of an analytical method. The method could derive robust and tight bounds for the variables of EVD algorithm. The bounds derived using the proposed approach remain same for any input matrix and are also independent of the number of iterations or size of the problem. Some benchmark hyperspectral data sets have been used to evaluate the efficiency of the proposed technique. It was found that by the proposed range estimation approach, all the variables generated during the computation of Jacobi EVD is bounded within ±1.
Fichier principal
Vignette du fichier
1711.10600.pdf (191.8 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01635958 , version 1 (30-11-2017)

Identifiers

  • HAL Id : hal-01635958 , version 1

Cite

Bibek Kabi, Anand S Sahadevan, Tapan Pradhan. An Overflow Free Fixed-point Eigenvalue Decomposition Algorithm: Case Study of Dimensionality Reduction in Hyperspectral Images. 2017 Conference On Design And Architectures For Signal And Image Processing (DASIP). , 〈http://dasip2017.esit.rub.de/〉, Sep 2017, Dresden, Germany. ⟨hal-01635958⟩
289 View
361 Download

Share

Gmail Facebook Twitter LinkedIn More